Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 807
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674001

ABSTRACT

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mechanistic Target of Rapamycin Complex 2 , Medulloblastoma , Meningeal Neoplasms , Otx Transcription Factors , Signal Transduction , Otx Transcription Factors/metabolism , Otx Transcription Factors/genetics , Humans , Animals , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/metabolism , Mice , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/secondary , Female , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Male
2.
Mol Genet Genomics ; 299(1): 45, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635011

ABSTRACT

Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.


Subject(s)
MicroRNAs , Otx Transcription Factors , Subarachnoid Hemorrhage , Animals , Rats , Homeodomain Proteins , MicroRNAs/genetics , NF-E2-Related Factor 2 , Oxyhemoglobins , Otx Transcription Factors/genetics
4.
Pathol Res Pract ; 254: 155116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218040

ABSTRACT

The most prevalent kind of primary brain tumors, gliomas, have a dismal prognosis. Recent advances in the tumor-promoting ability of OTX1 have drawn increasing attention. The overexpression of OTX1 has been reported to be associated with tumor-promoting effects in several malignancies, but its expression in gliomas is unknown. The oncogene OTX1 is increased in gliomas and is linked to a poor prognosis, as we show here. The degree of OTX1 positive expression is doubtlessly concomitant with the grade of glioma. We observed that OTX1 was up-regulated in gliomas, influenced the epithelial-mesenchymal transition (EMT), encouraged glioma cell growth and proliferation, and was linked to a poor clinical outcome for patients. At present, the prognosis of glioma is still not optimistic, and further research is needed to find a new target for treatment. According to our research, OTX1 is anticipated to emerge as a novel biological target for determining glioma prognosis and treatment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/pathology , Carcinogenesis/genetics , Prognosis , Cell Transformation, Neoplastic , Oncogenes , Cell Proliferation , Cell Line, Tumor , Brain Neoplasms/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Cell Movement , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
5.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069286

ABSTRACT

OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.


Subject(s)
Genes, Homeobox , Otx Transcription Factors , Otx Transcription Factors/genetics , Retina/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental
7.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37976029

ABSTRACT

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , RNA, Long Noncoding , Animals , Child , Humans , Mice , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Medulloblastoma/pathology , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
8.
World J Surg Oncol ; 21(1): 312, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37779184

ABSTRACT

BACKGROUND: Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS: DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS: There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS: Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , DNA Methylation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CpG Islands , Early Detection of Cancer , Colorectal Neoplasms/pathology , Adenoma/genetics , Adenoma/pathology , Cytoskeletal Proteins/genetics , Cell Adhesion Molecules/genetics , Proteoglycans/genetics , Endonucleases/genetics , Otx Transcription Factors/genetics
9.
Genet Res (Camb) ; 2023: 5513812, 2023.
Article in English | MEDLINE | ID: mdl-37780815

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most common type of thyroid neoplasms, characterized by evidence of follicular cell differentiation. Orthodenticle homeobox 1 (OTX1) is a transcription factor which has been implicated in numerous diseases, including malignancies. The objective of this research was to explore the function of OTX1 in PTC. Immunohistochemistry (IHC) was employed to determine the protein level of OTX1 in PTC specimens. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, a xenograft model on nude mice was established to investigate in vivo effects of OTX1. Our results revealed that OTX1 was significantly upregulated within specific PTC tissues and was remarkably correlated with unfavorable clinical outcomes in PTC. Silencing OTX1 resulted in a significant inhibition in cell viability and suppressed cell proliferation. In addition, in vivo experiments demonstrated that OTX1 silencing resulted in a significant suppression of tumor growth in nude mice. Collectively, these results suggest that OTX1 may play crucial roles in promoting PTC progression.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Animals , Mice , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , MicroRNAs/metabolism , Mice, Nude , Genes, Homeobox , Prognosis , Cell Movement , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Biomarkers , Gene Expression Regulation, Neoplastic , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
10.
Oncogene ; 42(18): 1466-1477, 2023 05.
Article in English | MEDLINE | ID: mdl-36928361

ABSTRACT

Orthodenticle homeobox (OTX1) is reported to be involved in numerous cancers, but the expression level and molecular function of OTX1 in gallbladder cancer (GBC) remain unknown. Here, we found the elevated level of OTX1 associated with poor prognosis in human gallbladder cancer. In vitro and in vivo studies of human gallbladder cancer cell lines demonstrated that overexpression of OTX1 promoted cell proliferation, whereas the downregulation inhibited it. Additionally, we found a tight correlation between the serum level of taurodeoxycholic acid (TDCA) and OTX1 expression. TDCA-induced activation of YAP1 by phosphorylation inhibition contributed to the transcriptional activation of OTX1. Mechanistically, we identified that OTX1 activated AKT signaling pathway by transactivating the expression of IFITM3 and thus promoted the proliferation of GBC cells. Taken together, our results showed that TDCA-YAP1-dependent expression of OTX1 regulated IFITM3 and affected GBC proliferation via the AKT signaling pathway. Our experiments also suggested that OTX1 is a novel therapeutic target for GBC.


Subject(s)
Gallbladder Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/physiology , Gallbladder Neoplasms/metabolism , Membrane Proteins/metabolism , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Taurodeoxycholic Acid/pharmacology
11.
Technol Cancer Res Treat ; 22: 15330338231154091, 2023.
Article in English | MEDLINE | ID: mdl-36740995

ABSTRACT

BACKGROUND: It is unclear whether the long non-coding RNA (lncRNA) OTX2 antisense RNA 1 (OTX2-AS1) plays a pivotal role in gastric cancer (GC). An analysis of The Cancer Genome Atlas (TCGA) database data and bioinformatics was used to explore the relationship between OTX2-AS1 and GC in the current study. METHODS: We evaluated the relationship between clinical features and OTX2-AS1 expression, prognostic factors, and the significant involvement of OTX2-AS1 in function using various statistical methods, such as Kaplan-Meier method, Cox regression analysis, Gene Set Enrichment Analysis (GSEA), and immune infiltration analysis. GC cell lines were tested for OTX2-AS1 expression using qRT-PCR. RESULTS: A high level of OTX2-AS1 expression was significantly and negatively associated with Helicobacter pylori (H pylori) infection in GC patients (P = .006) and predicted a poorer overall survival (OS) (HR: 1.54; 95% CI: 1.10-2.14; P = .011), progression-free interval (PFI) (HR: 1.75; 95% CI: 1.22-2.51; P = .002) and disease-specific survival (DSS) (HR: 1.85; 95% CI: 1.21-2.85; P = .005) in GC patients. There was an independent correlation between OTX2-AS1 expression (HR: 1.771; 95% CI: 1.164-2.696; P = .008) and OS in patients with GC. There were differential enrichments for the OTX2-AS1 high expression phenotype in the olfactory transduction, G alpha (s) signaling events, keratinization, olfactory signaling pathway, and preimplantation embryo. OTX2-AS1 expression may be related to certain immune-infiltrating cells. Compared to gastric epithelial cells (GES-1), GC cell lines showed a significant increase in OTX2-AS1 expression. CONCLUSION: There was a significant association between OTX2-AS1 expression in GC patients and poor survival, suggesting that it may be a useful biomarker for prognosis and immunotherapy outcome of stomach adenocarcinoma (STAD) in GC.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , Cell Line, Tumor , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Prognosis , Signal Transduction , Stomach Neoplasms/pathology , Up-Regulation , RNA, Long Noncoding/genetics
12.
PLoS Biol ; 21(1): e3001924, 2023 01.
Article in English | MEDLINE | ID: mdl-36649236

ABSTRACT

Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.


Subject(s)
Macular Degeneration , TRPM Cation Channels , Humans , Mice , Animals , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Genome-Wide Association Study , Proteomics , Macular Degeneration/genetics , Macular Degeneration/metabolism , Cell Differentiation , Epithelium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , TRPM Cation Channels/genetics , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
13.
Genes Genomics ; 45(4): 429-435, 2023 04.
Article in English | MEDLINE | ID: mdl-36434388

ABSTRACT

BACKGROUND: The transcription factor orthodenticle homeobox 2 (OTX2) has critical functions in brain and eye development, and its mutations in humans are related to retinal diseases, such as ocular coloboma and microphthalmia. However, the regulatory mechanisms of OTX2 are poorly identified. OBJECTIVE: The identification of JNK1 as an OTX2 regulatory protein through the protein interaction and phosphorylation. METHODS: To identify the binding partner of OTX2, we performed co-immunoprecipitation and detected with a pooled antibody that targeted effective kinases. The protein interaction between JNK1 and OTX2 was identified with the co-immunoprecipitation and immunocytochemistry. In vivo and in vitro kinase assay of JNK1 was performed to detect the phosphorylation of OTX2 by JNK1. RESULTS: JNK1 directly interacted with OTX2 through the transactivation domain at the c-terminal region. The protein-protein interaction and co-localization between JNK1 and OTX2 were further validated in the developing P0 mouse retina. In addition, we confirmed that the inactivation of JNK1 K55N mutant significantly reduced the JNK1-mediated phosphorylation of OTX2 by performing an immune complex protein kinase assay. CONCLUSION: c-Jun N-terminal kinase 1 (JNK1) phosphorylates OTX2 transcription factor through the protein-protein interaction.


Subject(s)
Mitogen-Activated Protein Kinase 8 , Otx Transcription Factors , Retina , Animals , Humans , Mice , Gene Expression Regulation , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Phosphorylation , Protein Binding , Transcription Factors/genetics , Retina/metabolism
14.
J Med Genet ; 60(6): 620-626, 2023 06.
Article in English | MEDLINE | ID: mdl-36368868

ABSTRACT

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Subject(s)
Cleft Lip , Cleft Palate , Goldenhar Syndrome , Humans , Animals , Goldenhar Syndrome/genetics , Zebrafish/genetics , DNA Copy Number Variations/genetics , Otx Transcription Factors/genetics
16.
Eur Urol Oncol ; 6(2): 183-189, 2023 04.
Article in English | MEDLINE | ID: mdl-36089502

ABSTRACT

BACKGROUND: According to the recent American Urological Association (AUA) guideline on hematuria, patients are stratified into groups with low, intermediate, and high risk of urothelial carcinoma (UC). These risk groups are based on clinical factors and do not incorporate urine-based tumor markers. OBJECTIVE: To evaluate whether a urine-based genomic assay improves the redefined AUA risk stratification for hematuria. DESIGN, SETTING, AND PARTICIPANTS: We selected patients with complete biomarker status, as assessed on urinary DNA, from a previously collected prospective Dutch hematuria cohort (n = 838). Patients were stratified into the AUA risk categories on the basis of sex, age, and type of hematuria. Biomarker status included mutation status for the FGFR3, TERT, and HRAS genes, and methylation status for the OTX1, ONECUT2, and TWIST1 genes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was the diagnostic model performance for different hematuria risk groups. Further analyses assessed the pretest and post-test UC probability in the hematuria subgroups using a Fagan nomogram. RESULTS AND LIMITATIONS: Overall, 65 patients (7.8%) were classified as low risk, 106 (12.6%) as intermediate risk, and 667 (79.6%) as high risk. The UC incidence differed significantly between the gross hematuria (21%, 98/457) and microscopic hematuria (4%, 14/381) groups (p < 0.001). All cancer cases were in the high-risk group, which had UC incidence of 16.8% (112/667). Application of the diagnostic model revealed robust performance among all risk groups (area under the receiver operating characteristic curve 0.929-0.971). Depending on the risk group evaluated, a negative urine assay was associated with post-test UC probability of 0.3-2%, whereas a positive urine assay was associated with post-test UC probability of 31-42%. CONCLUSIONS: This study shows the value that a urine-based genomic assay adds to the AUA guideline stratification for patients with hematuria. It seems justified to safely withhold cystoscopy for patients with AUA low risk who have a negative urine assay. In addition, evaluation should be expedited for patients with AUA intermediate or high risk and a positive urine assay. PATIENT SUMMARY: Patients who have blood in their urine (hematuria) can be classified as having low, intermediate, or high risk of having cancer in their urinary tract. We found that use of a urine-based genetic test improves the accuracy of predicting which patients are most likely to have cancer. Patients with a negative test may be able to avoid invasive tests, while further tests could be prioritized for patients with a positive test.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Hematuria/diagnosis , Hematuria/genetics , Hematuria/epidemiology , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/complications , Prospective Studies , Biomarkers, Tumor/genetics , Genomics , Risk Assessment , Transcription Factors , Homeodomain Proteins , Otx Transcription Factors
17.
Histol Histopathol ; 38(6): 659-668, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36093844

ABSTRACT

Gastric adenocarcinoma (GAC) caused by malignant transformation of gastric adenocytes is a malignancy with high incidence. MiR-195-5p modulates a variety of cancers. One of its target genes, orthodenticle homeobox 1 (OTX1), is believed to be a key modulator of tumor progression. We aim to analyze the mechanism of miR-195-5p and OTX1 in GAC. MiR-195-5p and OTX1 mRNA levels in GAC cells were tested via qRT-PCR. OTX1 protein and EMT-related protein levels were examined through western blot. Several cell functional assays were designed to measure changes in cell malignant behaviors. Dual luciferase assay verified the targeting relation of miR-195-5p and OTX1. These experimental results showed significantly low miR-195-5p expression and significantly high OTX1 expression in GAC cells. Enforced miR-195-5p level repressed cell malignant progression and accelerated cell apoptosis in GAC. Increased OTX1 weakened the above-mentioned effect caused by overexpressing miR-195-5p. Thus, miR-195-5p restrained migration, proliferation, invasion and epithelial-mesenchymal transition process of GAC cells, and promoted cell apoptosis through regulating OTX1. A new insight is provided for searching for biomarkers or therapeutic targets of GAC.


Subject(s)
Adenocarcinoma , MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Neoplasm Invasiveness/genetics , Stomach Neoplasms/pathology , Adenocarcinoma/genetics , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
18.
Genes (Basel) ; 13(12)2022 12 02.
Article in English | MEDLINE | ID: mdl-36553536

ABSTRACT

Agnathia-otocephaly complex (AOC) is a rare and usually lethal malformation typically characterized by hypoplasia or the absence of the mandible, ventromedial and caudal displacement of the ears with or without the fusion of the ears, a small oral aperture with or without a tongue hypoplasia. Its incidence is reported as 1 in 70,000 births and its etiology has been attributed to both genetic and teratogenic causes. AOC is characterized by a wide severity clinical spectrum even when occurring within the same family, ranging from a mild mandibular defect to an extreme facial aberration incompatible with life. Most AOC cases are due to a de novo sporadic mutation. Given the genetic heterogeneity, many genes have been reported to be implicated in this disease but to date, the link to only two genes has been confirmed in the development of this complex: the orthodenticle homeobox 2 (OTX2) gene and the paired related homeobox 1 (PRRX1) gene. In this article, we report a case of a fetus with severe AOC, diagnosed in routine ultrasound scan in the first trimester of pregnancy. The genetic analysis showed a novel 10 bp deletion mutation c.766_775delTTGGGTTTTA in the OTX2 gene, which has never been reported before, together with a missense variant c.778T>C in cis conformation.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Jaw Abnormalities , Pregnancy , Female , Humans , Genes, Homeobox , Craniofacial Abnormalities/genetics , Jaw Abnormalities/genetics , Abnormalities, Multiple/genetics , Homeodomain Proteins/genetics , Otx Transcription Factors/genetics
19.
Acta Neuropathol ; 144(6): 1143-1156, 2022 12.
Article in English | MEDLINE | ID: mdl-36181537

ABSTRACT

This study aimed to re-evaluate the prognostic impact of TP53 mutations and to identify specific chromosomal aberrations as possible prognostic markers in WNT-activated medulloblastoma (WNT-MB). In a cohort of 191 patients with WNT-MBs, mutations in CTNNB1, APC, and TP53 were analyzed by DNA sequencing. Chromosomal copy-number aberrations were assessed by molecular inversion probe technology (MIP), SNP6, or 850k methylation array hybridization. Prognostic impact was evaluated in 120 patients with follow-up data from the HIT2000 medulloblastoma trial or HIT registries. CTNNB1 mutations were present in 92.2%, and APC mutations in 6.8% of samples. One CTNNB1 wild-type tumor gained WNT activation due to homozygous FBXW7 deletion. Monosomy 6 was present in 78.6%, and more frequent in children than adults. 16.1% of tumor samples showed TP53 mutations, of those 60% with nuclear positivity for the p53 protein. Loss of heterozygosity at the TP53 locus (chromosome 17p13.1) was found in 40.7% (11/27) of TP53 mutant tumor samples and in 12.6% of TP53 wild-type cases (13/103). Patients with tumors harboring TP53 mutations showed significant worse progression-free survival (PFS; 5-year-PFS 68% versus 93%, p = 0.001), and were enriched for chromosomes 17p (p = 0.001), 10, and 13 losses. Gains of OTX2 (14q22.3) occurred in 38.9% of samples and were associated with poor PFS and OS (5-year-PFS 72% versus 93%, p = 0.017 resp. 5-year-OS 83% versus 97%, p = 0.006). Multivariable Cox regression analysis for PFS/OS identified both genetic alterations as independent prognostic markers. Our data suggest that patients with WNT-MB carrying TP53 mutations or OTX2 gains (58.1%) are at higher risk of relapse. Eligibility of these patients for therapy de-escalation trials needs to be debated.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Adult , Child , Humans , Cerebellar Neoplasms/genetics , Chromosome Aberrations , Medulloblastoma/pathology , Mutation/genetics , Neoplasm Recurrence, Local , Otx Transcription Factors/genetics , Prognosis , Tumor Suppressor Protein p53/genetics , Clinical Trials as Topic
20.
Nature ; 609(7929): 1021-1028, 2022 09.
Article in English | MEDLINE | ID: mdl-36131014

ABSTRACT

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Subject(s)
Cell Differentiation , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Cell Differentiation/genetics , Cell Lineage , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Cerebellum/pathology , Core Binding Factor alpha Subunits/genetics , Hedgehog Proteins/metabolism , Histone Demethylases , Humans , Ki-67 Antigen/metabolism , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Metencephalon/embryology , Metencephalon/pathology , Muscle Proteins , Mutation , Otx Transcription Factors/deficiency , Otx Transcription Factors/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...